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1. Introduction  

Quantitative structure-activity relationship (QSAR) methods employ linear and non-linear 
combinations of structural descriptors in prediction of physical-chemical and/or biological properties of 
chemical substances. Calculation of descriptors requires precise definition of the considered molecule, e.g. 
a molecular graph and/or a 3D structure.   

Nanoparticles (NPs) are another common form of chemicals, ubiquitous in pharmaceuticals, food 
products, cosmetics, and other technologies. There is much interest in the ability to quantitatively predict 
their toxicity and other properties related to risk assessment. Nanoparticles exhibit different characteristics 
than bulk materials or isolated molecules; their samples are typically non-uniform and present various 
shapes and sizes, which gives rise to their properties. Using conventional, “molecular” QSAR techniques 
is therefore not possible. We aim to incorporate new nanoparticle descriptors into QSAR-proven statistical 
modeling methods to provide capability to estimate toxicity or biological impact of nanoparticles without 
expensive experimental testing.  

One of the biggest challenges 
related to modeling nanoparticle 
properties is the scarcity and diversity 
of the structural data. Imaging 
techniques such as scanning electron 
microscopy (SEM) offer valuable 
insights into the morphology of NP 
samples. Our goal is to investigate 
SEM images as the source of 
morphological information for the 
statistical modeling of NP properties. 
We outline the first steps towards NP 
characterization by applying computer vision algorithms to quantify the morphological and topographical 
information contained in the SEM images, and convert them into numerical descriptors of NPs. 
Furthermore, we ask a fundamental question: how to select the optimal images one needs to properly 
capture both diversity and statistics of the nanoparticles present in a sample set? The motivation for this 
question is depicted in Figure 1, which illustrates the variation between images of the same dataset.  

  

Figure 1. Two SEM images of tricalcium phosphate (TCP). Visible variation 
in particle shape , size and density (number) between the two micrographs. 



2 
 

2. Methods 

2.1 Images 

Tricalcium phosphate (TCP), Ca3(PO4)2, a member of the calcium orthophosphate family, is a 
biocompatible and biodegradable compound used both in bulk and nanoparticle form e.g. as a component 
in composite biomaterials. In order to characterize sub-macro orthophosphate particles, we investigate and 
analyze micrographs of TCP. 

Using Phenom ProX Desktop Scanning Electron Microscope (accelerating voltage: 5 000 – 15 000 V), 
we obtained 15 grayscale (8-bit) .tiff images of TCP grains. At x400 magnification, the 2048 by 2048 
pixels (px) micrographs were scaled to 3.061 px/µm (0.3267 µm/px). The particle number, density and 
shape varied between SEM images (Figure 1Error! Reference source not found.). 

2.2 Computer vision 

We use an open source, Java-based program called ImageJ to construct our computer vision 
methodology. ImageJ offers scripting capability useful to analyze multiple images. Our analysis algorithm 
was divided into two sections: image processing (preparation) and image analysis (numerical 
transformation). 

2.2.1 Image processing 

 Prior to any analysis, the SEM images require appropriate preprocessing, such as border improvement 
and contrast enhancement. In this study, we implemented a workflow with three main processing steps: 
filtering, thresholding and segmentation. The graphical output (result) at each stage of the procedure is 
presented in Figure 2, with a brief description given below: 
 1. FILTERING. Reducing noise, (e.g. dust, dirt, 
artifacts), through smoothing local variations in the 
image. Method: anisotropic diffusion - a non-linear 
filter that blurs areas with similar intensity while 
preserving the edges. 
 2. THRESHOLDING. Separating the background 
from the objects based on their pixel intensity (0-
255). Method: intermodes, which iteratively 
smoothes out the intensity histogram until there are 
only two maxima, and then uses their average as the 
limit value. 
 3. SEGMENTATION. Identifying and selecting 
regions of interest which are most likely to 
correspond to NP. Method: discarding objects on 
edges or with size smaller than 10 µm2 

 
  

Figure 2. Output of each image processing step implemented 
in NP characterization. 
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2.2.2 Image analysis 

After identifying and selecting the objects (particles) of interest, our algorithm proceeds in extracting NP 
features (in the form of numerical descriptors). We obtained ten shape and size descriptors, briefly 
described in Table 1.  

Table 1. Calculated morphological NP features: shape (purple) and size (green) descriptors. 

 

2.2.2.1 Representativeness 

 After establishing a protocol to extract useful NP descriptors from SEM images, we stood before the 
issue of image selection. Before an image can be used as a source of descriptors for QSAR/QSPR 
modeling, we must first establish its representativeness, i.e. the level of (morphological) feature diversity. 
A micrograph containing fewer but more diverse particles is more valuable than one with a large number 
of particles differing very little from each other. In some cases, it might be necessary to use more than one 
SEM image in order to incorporate all the possible variations of a descriptor value (particle feature). 
 We developed a means of assessing the significances of information carried in SEM images by 
employing NP statistics. We designed a series of analytical steps, and implemented an algorithm using the 
R statistical software: 
 STEP 1: Calculating the overall probability density for each descriptor. The probability density 
function (PDF), describing the relative likelihood for a variable to take on a specific value, is the ideal tool 
for assessing the range and frequency of descriptor values. The probability density was calculated using a 
kernel density estimation (KDE) method implemented in R's stats package. These kernels assume a 
Gaussian function to approximate the data distribution locally, following the equation below:  

𝐺 𝑥;   𝜎 =   
1

𝜎 2𝜋
  𝑒!

!!
!!! 

where 𝐺 is the Gaussian kernel, 𝑥 is a data point and 𝜎 stands for standard deviation of the data.  
 We used the default smoothing bandwidth estimation procedure from the stats package, which is based 
on Silverman's rule of thumb. The complete 15-SEM image set was used as the reference curve, such that 
the probability density for each descriptor was estimated on all the NPs from all 15 SEM images 
combined. The respective minimum and maximum descriptor values were used as lower and upper value 

Feature Description Unit
Area area of selection µm-2

Perimeter length of the outside boundary of the selection µm
Major Axis primary axis of the best fitting ellipse; Sellipse = Sparticle µm
Minor Axis secondary axis of the best fitting ellipse; Sellipse = Sparticle µm
Aspect Ratio the ratio of Major Axis to Minor Axis —

Feret's diameter MAX maximum distance between the two parallel lines restricting the object perpendicular to a 
specific direction; maximum caliper µm

Feret's diameter MIN minimum distance between the two parallel lines restricting the object perpendicular to a 
specific direction; minimum caliper µm

Circularity
comparison of the surface area of a particle to that of a circle with a perimeter of an equal 
length; lparticle = lcircle

—

Roundness
comparison of the surface area of a particle to that of a circle with a major axis (diameter) of an 
equal length; MjrAxparticle = MjrAxcircle

—

Solidity ratio of the particle Area and Convex area; compactness —
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range limits. Within those set boundaries, 512 evenly spaced points compose the density estimation. Thus 
obtained, the descriptor population PDFs would serve as reference curve in convergence analysis. 
 STEP 2: Determining all the possible image combinations (subsets). In order to investigate potential 
procedures for optimal image selection, we took all possible image combinations (subsets) under 
consideration. When listing all possibilities, we started with one-image subsets, taking into account only 
one image at a time. Following that, we found all two-image combinations, then all three-image 
combinations (subsets) and so on – up to 14-image subsets. In total, we found 32,766 possible 
combinations (subsets) of 15 images. 
 STEP 3: Calculating subset probability density function for each descriptor. Implementing the 
method described in STEP 1, we calculated the PDF of each descriptor for each subset. We used the 
previously established descriptor boundaries (lower and upper range limits) in the subset probability 
density estimations, thereby ensuring the 512 sampling point intervals were identical each time. 
Additionally, the smoothing bandwidths selected during the overall density estimations were implemented 
here as default.  
 STEP 4: Calculating the dissimilarity score. In order to compare the overall (yi) and subset (fi) 
descriptor probability distributions at the i-th sample point, we calculated the mean absolute error (MAE): 

𝑀𝐴𝐸 =   
1
𝑛

𝑓! − 𝑦! =
!

!!!

1
𝑛

𝑒!

!

!!!

 

We obtained 10 MAE values per subset, each for the respective descriptor. Since the mean absolute error 
value for two probability densities is de facto difference between them expressed in numerical form, we 
call it the dissimilarity score (DS). 

3. Results 

3.1 Particle features and corresponding dissimilarity scores 

 The average particle number per image oscillates around 900-1100, with the exception of images 1, 2, 
3, and 12 (Figure 3 A). The majority of the particles are small, under 100 µm (Figure 3 B: Area) and quite 
compact (Figure 3 B: Solidity). 

 
Figure 3. Particle count per image (A) and overall descriptor value distributions (B) 

 For all descriptors we observed a decrease of dissimilarity score values with increasing subset size 
(Figure 4). It is readily noticeable in the form of a "shift" from highest DS values for 1-element subsets 
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(bottom, peach-colored bar) to lowest values for 14-element subsets (top, pink closed bar) for each 
feature.  

 Moreover, the dissimilarity score 
values depend on descriptor type: 
size descriptors have smaller DS 
values (10-6 – 10-3), whereas shape 
descriptors tend to reach higher DS 
values (10-3 – 10-1). 

 Focusing on one of the NP 
descriptors, e.g. circularity, we notice 
that some of the subsets have lower 
DS values than others, despite being 
of equal size (Figure 5 A). This 
difference arises from the fact that 
image subsets with lower DS contain NPs with more diverse values for circularity. Moreover, certain 
subsets of different sizes have the same DS (Figure 5 A), signaling not only the number but also the 
choice of images dictates a subset's representativeness. This phenomenon occurs in all descriptors. 

 
Figure 5. Dissimilarity score of all subsets for Circularity; each dot represents a subset, colored by its size (A), and probability density of 

Circularity values per image (B). 

 As illustrated in Figure 5 B, the overall probability density (black line), representing all images, and the 
probability density estimates for each image (various colors) vary significantly. The PDF curve of Image 
11 (blue polygon) almost overlaps with the overall PDF curve, meaning Image 11 is the most 
representative in terms of circularity. Conversely, the PDF curve for Image 3 (yellow polygon) differs 
significantly from the overall, making it the least representative of all 15 SEM images. 

3.2 Image selection method 

  We developed an effective way of selecting the most representative images using the lowest 
dissimilarity score (Tables 2 and 3) as a benchmark. For a given number of images (specific subset size), 
the lowest DS value will indicate the most representative image combination.  

Interestingly, despite containing the largest number of particles, Image 3 is not the most representative 
according to any descriptor. It is not present in any of the 1-image subsets with the lowest DS values, 

Figure 4. Dissimilarity score per subset size for each descriptor. Differently colored bars 
represent combined DS values for all image subsets of a given size. 
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proving that image particle count is not indicative of feature diversity and should not be used as a factor 
during the image selection process. 

When comparing subsets in terms of 
circularity, starting with the smallest 
one, we observe that Image 11 had the 
lowest dissimilarity score value (Table 
2), meaning it is the most representative 
of the group. When selecting the two 
most representative images, we should 
combine Image 2 and Image 4, as they 
had the lowest DS value out of all 2-
image subsets. When selecting three 
most representative Images we should 
combine Images 1,4, and 9, etc. 

When choosing a set of SEM images 
representative in terms of particle area 
(Table 3), we find that the best 
combinations, those with the lowest DS 
value, differ from the subsets for 
Circularity. Here, Image 4 is most 
representative of the whole set, whereas 
for circularity it was Image 11. For two 
most representative images, we should 
combine Images 3 and 13, not 2 and 4, 
as was the case with circularity.  

 
In fact, all descriptors have their own sets of optimal (representative) image combinations, independent 
from each other. 

4. Conclusions 

 We provided a framework for extracting morphological descriptors of nanoparticles from SEM images. 
Using this framework, we have looked at 15 SEM images of TCP material, and analyzed their NP 
distributions in terms of their shape and size.  
 We have developed a statistical means for image comparison, enabling the selection of most 
representative images and image sets. We have demonstrated that when choosing a representative set of 
SEM images, one should make the selection separately for each descriptor. We have proven that 
information quality (feature diversity) is independent of the number of particles in an image, and the most 
populated images are not always the optimal choice.  
 The next stage of our research will focus on devising a measure of information content for SEM 
images, based on the distribution of particle features. Following that, we will compare the morphological 
information obtained by means of computer vision for different biomaterials and group them accordingly 
to those features, looking for natural clusters. Afterwards, we will investigate relationships between 
particle morphology and their biological properties. 

Table 3. List of Images from the most representative image combinations of particular 
size based on Circularity. Each Image was assigned a unique color for clarity. 

Subset size Lowest DS [x10-5]
1 3.602 4 - - - - - - - - - - - - -
2 2.332 3 13 - - - - - - - - - - - -
3 1.628 1 5 9 - - - - - - - - - - -
4 1.291 3 6 11 15 - - - - - - - - - -
5 1.015 1 3 4 7 15 - - - - - - - - -
6 0.854 1 3 4 7 11 15 - - - - - - - -
7 0.669 1 3 5 6 9 11 15 - - - - - - -
8 0.606 1 3 5 6 9 11 12 15 - - - - - -
9 0.567 1 3 5 6 8 9 11 12 15 - - - - -

10 0.526 1 2 3 4 7 8 11 13 14 15 - - - -
11 0.463 1 2 3 5 6 9 10 11 12 13 15 - - -
12 0.360 1 2 3 5 6 8 9 10 11 12 13 15 - -
13 0.318 1 2 3 5 6 7 8 9 10 11 13 14 15 -
14 0.209 1 2 3 5 6 7 8 9 10 11 12 13 14 15

Image list

Subset size Lowest DS [x10-2]
1 6.550 11 - - - - - - - - - - - - -
2 4.232 2 4 - - - - - - - - - - - -
3 2.594 1 4 9 - - - - - - - - - - -
4 1.704 9 10 13 14 - - - - - - - - - -
5 1.418 9 10 11 13 14 - - - - - - - - -
6 1.276 2 3 6 7 12 15 - - - - - - - -
7 1.213 2 3 6 7 11 12 15 - - - - - - -
8 0.953 2 3 6 7 10 13 14 15 - - - - - -
9 0.804 2 3 6 7 10 12 13 14 15 - - - - -

10 0.597 1 2 3 4 5 6 7 8 12 15 - - - -
11 0.549 1 2 3 4 5 6 7 8 11 12 15 - - -
12 0.607 1 2 3 4 6 7 9 10 11 12 14 15 - -
13 0.554 1 2 3 4 5 6 7 8 9 11 13 14 15 -
14 0.364 1 2 3 4 5 6 7 8 9 10 12 13 14 15

Image list

Table 2. List of Images from the most representative image combinations of particular 
size based on Circularity. Each Image was assigned a unique color for clarity. 


